
SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

Synthclient API

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

Contents
Terminology 2

Security 2

API examples 2
Bash example . 2
Python example . 3

Input fields 4
fasta field . 5
region field . 5
provider_reference field . 5
Notes . 5

Output fields 6
Example Response: No hazards detected . 9
Example Response: Hazards detected . 9

Organism type tags . 10
Warnings . 11
Errors . 12
Implementations must fail closed . 13

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

This page documents the v1 production API https endpoints, which talk to our backend infrastructure.

Terminology

Uses of the termMAY, SHOULD,MUST,MAY NOT, SHOULD NOT,MUST NOT, and so forth, are interpreted according to
RFC2119.

Security

This API is not a substitute for an architectural specification. However, for implementors’ basic knowledge:

• Once the inputs below are handed to our library and/or REST API endpoint, they are immediately encrypted
using a blinding function inside this endpoint. No unencrypted sequences are ever transmitted or stored any-
where.

• Thus, as long as an implementer runs a local synthclient instance, unencrypted sequence datawill never leave
their network.

• It is not possible for SecureDNA or any network eavesdropper to know which sequences are being screened;
all computation is done on encrypted data.

• If a hazard hit is detected, then and only then is it even possible for SecureDNA to know anything about the
sequence which hit, and the only disclosure is those particular short (30-60 bp) sequences which actually
match a known hazard or a mutant/variant of one. SecureDNA uses that information to explain in its response
which likely hazardous organism(s) matched the hit(s).

• Only outbound network connections are made from this endpoint to the SecureDNA screening infrastructure.
No inbound network connections are ever required.

API examples

Here are some quick examples of how to use the API in Bash and Python:

Bash example

#!/usr/bin/env bash

function format_json() {
use jq if it's available
if command -v jq &>/dev/null; then

jq '.'
else

cat
fi

}

If your version of curl doesn't have --no-progress-meter, you may
remove it or use --silent instead. However, --silent will also
suppress errors.

curl 'http://localhost/v1/screen' \

https://tools.ietf.org/html/rfc2119

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

curl 'https://demo.prod.securedna.org/v1/screen' \
--header "Content-Type: application/json" \
--no-progress-meter \
--data-raw '

{
"fasta": ">NC_007373.1\nGAATCGCAATTAACAATAACTAAAGAGAAAAAAGAAGAACTC",
"region": "all",
"provider_reference": "documentation"

}
' | format_json

Python example

#!/usr/bin/env python3

import json
import urllib.request
import urllib.error
import sys

def print_json(s: str, file=sys.stdout) -> None:
"""Pretty-print a JSON string."""
print(json.dumps(json.loads(s), indent=2), file=file)

base_url = "https://demo.prod.securedna.org"
base_url = "http://localhost"

fasta = """
>NC_007373.1
GAATCGCAATTAACAATAACTAAAGAGAAAAAAGAAGAACTC
"""
data = {

"fasta": fasta,
"region": "all",
"provider_reference": "documentation",

}

request = urllib.request.Request(
base_url + "/v1/screen",
method="POST",
data=json.dumps(data).encode("utf-8"),

)
request.add_header("Content-Type", "application/json")

try:
response = urllib.request.urlopen(request)

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

print_json(response.read().decode("utf-8"))
except urllib.error.HTTPError as err:

print(f"Error: {err.code} {err.reason}", file=sys.stderr)
print_json(err.read().decode("utf-8"), file=sys.stderr)
sys.exit(1)

Once that works for you, you should then change the server URL to point at your own container, not our demo server—
our demoserver is not intended tohave large, automated runspassed through it. Your owncontainer is abetter choice
once you get going. Also, note that the example uses https, but if you haven’t configured that in your container, use
http for the container URL instead.

Note also that the bash script isn’t designed for extremely long strings (it will complain) but it’s easy to pass files
to curl instead. If you have a very old version of curl, it may complain that either --no-progress-meter or
--data-raw don’t exist; if you can’t upgrade, there are workarounds, but it’s likely you may be using some other
tool anyway as part of a real API and not curl.

For detailed explanations of the inputs and outputs to the API, please see the sections below.

Input fields

A synthclient API request has the following type, in Typescript syntax: (Note that a questionmark after the field name
means the field may be omitted.)

/** A request to the /v1/screen endpoint. */
interface ApiRequest {
/**
* The input FASTA. This field MUST be included.
*/

fasta: string,

/**
* The screening region. This field MUST be included.
* See below for more details.
*/

region: "us" | "prc" | "eu" | "all";

/**
* An optional arbitrary string that will be returned in the
* response, for your tracking purposes. This field MAY be included.
*
* Note that this string may be logged in our backend, so be careful
* about including sensitive information (such as customer names).
*/

provider_reference?: string | null,
}

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

fasta field

fasta is the actual FASTA information to check. This is a string containing any number of newline-separated records,
each one of which looks like

>Nipah virus
ACCAAACAAGGGAGAATATGGATACGTTAAAATATATAACGTATTTTTAAAACTTAGGAA
CCAAGACAAACACTTTTGGTCTTGGTATTGGATCCTCAAGAAATATATCATCATGAGTGA
TATCTTTGAAGAGGCGGCTAGTTTTAGGAGTTATCAATCTAAGTTAGGGAGAGATGGGAG

Note that by our parsing rules, a bare DNA sequence (e.g., "fasta": "GCAACATAGGAAACACACCTATGGGTCATG")
is considered a valid FASTA with an empty header. See Synthclient_API#Notes for more details.

region field

region is the jurisdiction region you wish the server to use when evaluating whether a request should be granted.
The options are:

• "region": "us" for the United States (Select Agent and Australia Group lists)
• "region": "eu" for the European Union (European Union and Australia Group lists)
• "region": "prc" for the People’s Republic of China (PRC export control lists)
• "region": "all" for all regions (the request will be denied if it would be denied in any region)

The determination is made via organism tags; see the tags section below for more information.

provider_reference field

provider_reference is an arbitrary provider-supplied UTF-8 Unicode string. This field will be returned un-
changed in the results, and will be signed over in those modes in which results are signed. This allows providers
who store screening results in a database to correlate a particular order result with their own order reference (likely
a PO number or some sort of UUID), and, if signed, to prove that this particular result was associated with the
given provider identifier. It may also be logged by SecureDNA servers to enable debugging (wherein a provider
informs SecureDNA of a particular string so it can be found in logs). Hence, providers SHOULD NOT include
customer-proprietary data in this field. If this field is not supplied, returned results MAY either omit the field or emit
it with a value of the null string; provider implementations SHOULD NOT depend upon one behavior or the other.

Notes

• The FASTA format is poorly standardized; see the URLs on this page for pointers to several partial and conflict-
ing definitions. We adopt a consensus view and try to be liberal in what we accept.

• One record consists of one or more consecutive header lines, followed by one or (typically, many more) DNA
nucleotides.

• There can be any number of these records concatenated into a single string; we will screen them all.
• Header lines MUST have > or the semi-obsolete ; (0x3b) in the first column to be recognized as such.
• Header lines MAY use UTF-8, although > or ; MUST be ASCII characters (0x3e or 0x3b).
• Header lines MAY be nonunique. In other words, the same header line MAY appear in more than one place in

the input.
• Header lines are ignored for screening purposes but are used when identifying hazard hits for customer con-

venience.
• Any text present in the input before the first header line is treated as if it is sequence data; it is not ignored.

In other words, in this case, the very first record MAY have zero header lines associated with it. (Some FASTA

https://en.wikipedia.org/wiki/FASTA_format
Synthclient_API#Notes
https://bioinformatics.stackexchange.com/questions/16341/can-the-header-line-contain-arbitrary-text-in-fasta-format

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

files appear to treat this as a comment, but we cannot, because we have no guarantee that all providers will
do so. Any provider which treated a headerless sequence as a synthesis request could therefore allow a trivial
screening bypass if we ignored this text; customers with such files SHOULD be encouraged to fix them via the
provider checking their input and complaining before attempting to screen.)

• Multiple header linesMAY appearwith no intervening sequence; if so, they are treated as if all of themdescribe
the following sequence.

• The sequence information itself MAY be on separate lines of any length, or on one long single line, with no
line-length limit.

• Sequence information MUST use only ASCII characters. Characters outside of allowable DNA nucleotides,
plus ASCII whitespace, will cause the request to be rejected.

– We explicitly allow ambiguous DNA, aka wobble codes, as well as specific DNA bases. Thus, the follow-
ing nucleotides are allowed: ABCDGHKMNRSTVWY.

– Windows which contain wobbles are internally expanded to a large but variable number of possibilities
and each possibility is screened. Windowswhichwould exceed expansion limits are simply dropped and
will not be screened. Thus, for example NNNNNNNNNNNNNNNNNNNNAAAAAAAAAA will not be screened,
but NNAAAAAAAAAAAAAAAAAAAAAAAAAAAA definitely will be.

– If the synthesis itself cannot support wobble codes, synthclient expects that its caller (automation
at the provider or in the benchtop, upstream of synthclient) will take pains to inform the customer
that the order cannot be synthesized as specified.

– We do not allow amino acids, because the resulting order would be ambiguous due to degeneracy. How-
ever, the submitted DNA sequence is translated to both directions and all three reading frames of amino
acids and those translations are also used for screening.

• Line termination MAY be ASCII newline (’\n’, 0x0a), ASCII carriage return (’\r’, 0x0d), or both (’\r\n’, x0a0d).
• The input string is NOT REQUIRED to end with a line termination character, although it is likely that it will.
• Alphabetic case in sequences is ignored.
• A single screening request MUST NOT include more than one customer’s order.
• A single screening request MUST include all of that customer’s order.

(The latter two requirements are forward-looking to when screening includes a permissions system.)

Thus, this is a valid input:

> header 1
ACCAAACAAGGGAGAATATGGATACGTTAAAATATATAACGTATTTTTAAAACTTAGGAA
CCAAGACAAACACTTTTGGTCTTGGTATTGGATCCTCAAGAAATATATCATCATGAGTGA
> header 2
> header 3
GCTAGTTTTAGGAGTTATCAATCTAAGTTAGGGAGAGAT

Output fields

A synthclient API response has the following type, in Typescript syntax: (Note that a question mark after the field
name means the field may be omitted.)

/** The top-level response. */
export interface ApiResponse {

/** Whether synthesis should be allowed to proceed. */
synthesis_permission: "granted" | "denied";
/**

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

* If provided in the input, `provider_reference` will be
* returned here. `null` otherwise.
*/

provider_reference?: string | null;
/**
* If `synthesis_permission` is `"denied"` due to one or more
* screening hits, this list will contain those hits, grouped
* by which record they occurred in.
*/

hits_by_record?: FastaRecordHits[];
/** Any non-fatal warnings will be in this list. */
warnings?: ErrorOrWarning[];
/**
* Will contain fatal errors if `synthesis_permission
* is `"denied"` due to an error.
*/

errors?: ErrorOrWarning[];
}

/** Screening hits, grouped by which record they occurred in. */
export interface FastaRecordHits {

/** The record header, possibly empty. */
fasta_header: string;
/** Line range in FASTA input this record covers. */
line_number_range: [number, number];
/** The length of the record sequence. */
sequence_length: number;
/**
* The hits that occurred in this record, grouped by similarity.
*/

hits_by_hazard: HazardHits[];
}

/** A list of hits grouped by similarity. */
export interface HazardHits {

/** Whether this hit group matched nucleotides or amino acids. */
type: "nuc" | "aa";
/**
* Whether this hit group matched a hazard wild type
* (observed genome) or predicted functional variant
* (mutation SecureDNA believes would still be hazardous).
* This field is always `null` for `type: "nuc"` hit groups.
*/

is_wild_type: boolean | null;
/**
* A list of regions in the sequence that matched this
* hazard group.
*/

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

hit_regions: HitRegion[];
/** The most likely organism match for this hazard group. */
most_likely_organism: Organism;
/**
* All possible hazard matches for this hazard group,
* including `most_likely_organism`.
*/

organisms: Organism[];
}

/** A region of a record sequence that matched one or more hazards. */
export interface HitRegion {

/** The matching subsequence. */
seq: string;
/** The start of `seq` in the record sequence, in bp. */
seq_range_start: number;
/** The (exclusive) end of `seq` in the record sequence, in bp. */
seq_range_end: number;

}

/** Organism metadata. */
export interface Organism {

/** The SecureDNA name for this organism. */
name: string;
/** The high-level classification of this organism. */
organism_type: "Virus" | "Toxin" | "Bacterium" | "Fungus";
/** A list of NCBI accession numbers for this organism. */
ans: string[];
/**
* A list of SecureDNA tags for this organism.
* A table of current tags is included below,
* but more may be added in the future.
*/

tags: string[];
}

/** An error or warning. */
export type ErrorOrWarning = {

/**
* The diagnostic code.
* A list of current diagnostic codes is provided
* below, but more may be added in the future.
*/

diagnostic: string;
/** Additional information about the cause of this error. */
additional_info: string;
/**
* If applicable, a line number range in the

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

* input FASTA that caused this error or warning.
*/

line_number_range?: [number, number] | null;
}

Following are examples of typical responses.

Example Response: No hazards detected

No hazards were detected in the customer’s input, therefore synthesis SHOULD proceed.

{
"synthesis_permission": "granted"

}

Example Response: Hazards detected

Hazards were detected in the customer’s input, therefore synthesis MUST NOT proceed without some additional
authorization. (We intend to soon make available a certificate system allowing customers to be preapproved for
particular sequencesby their regulatory agencies, allowing SecureDNA to check suchpreapprovals, without requiring
human input, and authorize synthesis if the customer’s preapproval matches all hazards in the order submitted.)

{
"synthesis_permission": "denied",
"hits_by_record": [

{
"fasta_header": "MERS_segment_2",
"line_number_range": [24, 79],
"sequence_length": 1234,
"hits_by_hazard": [

{
"type": "nuc",
"is_wild_type": null,
"hit_regions": [

{
"seq": "CTTCATCCGCACGTGCCAGACCCTTATTCTAAGGTGGCACTT",
"seq_range_start": 0,
"seq_range_end": 42

}
],
"most_likely_organism": {

"name": "coronavirus MERS-CoV",
"organism_type": "Virus",
"ans": ["GCA_000901155.1", "NC_019843.3"],
"tags": [

"AustraliaGroupHumanAnimalPathogen",
"EuropeanUnion",
"PotentialPandemicPathogen",
"HumanToHuman"

]

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

},
"organisms": [

{
"name": "coronavirus MERS-CoV",
"organism_type": "Virus",
"ans": ["GCA_000901155.1", "NC_019843.3"],
"tags": [

"AustraliaGroupHumanAnimalPathogen",
"EuropeanUnion",
"PotentialPandemicPathogen",
"HumanToHuman"

]
},
{

"name": "Human coronavirus 229E",
"organism_type": "Virus",
"ans": ["GCA_000853505.1"],
"tags": ["HumanToHuman"]

}
]

}
]

}
]

}

Organism type tags

Tags allow providers to determine why an organism was flagged. Not all tags indicate that a given organism is regu-
lated via lists such as the Australia Group; some exist to allow providers to give particular orders extra scrutiny even
if they are not regulated.

Tags may represent:

• a transmission pathway
• a risk categorization
• inclusion in a list published by an organization of sequences of concern

Note:

• Tags may be added in the future.
• Code should treat tags in a case-independent manner.
• Many organisms have multiple simultaneous tags.

This table contains the current tags and whether they will trigger a denial in a specific region. However, note that
because organisms can have multiple tags, these denials are cumulative: if an organism has the AustraliaGroupHu-
manAnimalPathogen tag (which is not denied in the PRC), it may nonetheless be denied in the PRC if it also has the
PRCExportControlPart1 tag.

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

Tag "us" "eu" "prc" "all"

Regulated lists:
SelectAgentHhs1 Denied Granted Granted Denied
SelectAgentUsda2 Denied Granted Granted Denied
SelectAgentAphis3 Denied Granted Granted Denied
AustraliaGroupHumanAnimalPathogen4 Denied Denied Granted Denied
AustraliaGroupPlantPathogen5 Denied Denied Granted Denied
PRCExportControlPart16 Granted Granted Denied Denied
PRCExportControlPart27 Granted Granted Denied Denied
EuropeanUnion8 Granted Denied Granted Denied
Risk categorization/transmission pathways:
ArthropodToHuman9 Granted Granted Granted Granted
HumanToHuman10 Granted Granted Granted Granted
PotentialPandemicPathogen11 Denied Denied Denied Denied
RegulatedButPass Granted Granted Granted Granted

The two transmission pathway tags (ArthropodToHuman andHumanToHuman), along with the PotentialPandemic-
Pathogen and RegulatedButPass tags, are SecureDNA-specific classifications:

• ArthropodToHuman and HumanToHuman do not themselves affect the synthesis_permission flag.
• PotentialPandemicPathogen does set the synthesis_permission to denied. The intent is to force hu-

man review and/or exemption-list handling for these organisms, even thoughmany are not (yet) in the various
lists above.

• RegulatedButPass is a tag with special behavior. It isn’t inherent to an organism, but instead is added based
onwhat a hit (item inhits_by_hazard)matches. If the SecureDNAsystemdetects that a hit is likely low-risk
(for example, matching against non-pathogenic or non-toxin-producing genes), the tag will be added to rele-
vant organisms in the organisms list for that hit, based on internal data. RegulatedButPass doesn’t affect
the synthesis_permission flag, but is instead meant as a signal to human reviewers that a hit, especially
one in an order made by a trusted customer, may be lower risk. If a hit matches any high-risk genes, the Reg-
ulatedButPass tag will not appear on any organism in that hit’s organisms list. The RegulatedButPass tag
has no relation to whether the DNA matched by a hit is legal to synthesize or export from a given region.

Warnings

Warnings are nonfatal. Synthesis may or may not proceed based on the value of synthesis_permission. Warn-
ings may indicate to the customer that their input data may not be interpreted as they think or that some other
condition has arisen to which the customer may want to attend. For example, we may issue warnings if a certificate

1Select Agent: US Department of Health and Human Services
2Select Agent: US Department of Agriculture
3Select Agent: USDA Animal and Plant Health Inspection Service
4Australia Group human and animal pathogens
5Australia Group plant pathogens
6People’s Republic of China export control list (2002), part 1
7People’s Republic of China export control list (2002), part 2
8European Union export and dual-use control list
9Arthropod-to-human transmissible pathogen

10Human-to-human transmissible pathogen
11Potential pandemic pathogen

https://www.selectagents.gov/sat/list.htm
https://www.selectagents.gov/sat/list.htm
https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/human_animal_pathogens.html
https://www.dfat.gov.au/publications/minisite/theaustraliagroupnet/site/en/plants.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R0821

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

will expire soon to encourage renewal before expiration.

{
"synthesis_permission": "granted",
"warnings": [

{
"diagnostic": "certificate_expiring_soon",
"additional_info": "The provided certificate is expiring soon, at

2024-02-14T04+00:00."↪

}
]

}

Errors

Errors are fatal. SynthesisMUST NOT proceed. (Otherwise, a simple network interruption would allow trivial bypass-
ing of screening and allow synthesizing anything.) Errors indicate serious problems either with the customer’s input,
with the screening system itself, or the reachability of the screening infrastructure from the provider attempting
screening.

{
"synthesis_permission": "denied",
"errors": [

{
"diagnostic": "invalid_input",
"additional_info": "Error parsing FASTA: error parsing record: bad

nucleotide: '@'",↪

"line_number_range": [103, 103]
}

]
}

The diagnostic field contains a short string describing the error type. The current diagnostic codes are as follows.

• not_found — the request was made to an unknown URL.
• internal_server_error — the server encountered an error.
• invalid_input — the request is formatted incorrectly in some way.
• request_too_big — the request FASTA exceeds configured size limits.
• too_many_requests — a rate limit has been exceeded. (More information is available in the

additional_info field.)
• unauthorized — the request lacks authorization. (This diagnostic is only produced by the /demo end-

point. If a request is made with invalid or expired certificates, the result is 400 unable to verify the
signature.)

The additional_info field contains a longer description of what caused the error. Implementations MUST NOT
depend on the contents of this field, as it is liable to change with system updates.

If applicable, the line_number_range field contains the line numbers (in the input FASTA) that caused the error.

SecureDNA Synthclient API
Printed Friday 15th March, 2024, at 16:40

SecureDNA

Implementations must fail closed

ImplementationsMUST default to DENY permission for synthesis unless otherwise instructed. This means that bugs
in either end of the protocol or in the implementation will cause immediate failures and be detected (”fail closed”),
rather than being silently ignored and enabling the synthesis of dangerous organisms (”fail open”).

This means that all of these potential situations, which are likely implementation bugs, should DENY permission:

• Failure to parse the resulting JSON at all.
• Failure to find the synthesis_permission field.
• Any synthesis_permission value which is not equal to the ASCII string granted. In particular, imple-

mentations MUST NOT assume that they should instead check for the string denied and deny synthesis; it is
safer from an engineering perspective to only allow synthesis if the value granted is found.

In addition, implementations MUST obey the synthesis_permission value in determining whether to synthe-
size, andMUST NOT attempt to instead make this decision based on whether the hits_by_hazard field is present.
Future versions of this software will enable a permission system, whereby authorized customers may be able to
synthesize particular subsets of hazardous sequences if preemptively granted permission by an authorizing body,
and such data returns MAY include a non-empty hits_by_hazard field while nonetheless granting permission to
synthesize.

	Terminology
	Security
	API examples
	Bash example
	Python example

	Input fields
	fasta field
	region field
	provider_reference field
	Notes

	Output fields
	Example Response: No hazards detected
	Example Response: Hazards detected

	Organism type tags
	Warnings
	Errors
	Implementations must fail closed

